
Design for a user
Develop for a browser



yuliya.demchenko@hm.com
linkedin.com/in/demchenko

● Hyper Island, Crew 12
● Entrepreneur and Consultant
● Currently work as an Architect at H&M and FE 

competence community facilitator.
● First website: ~17 years ago

Yuliya Demchenko

https://www.linkedin.com/in/demchenko


rafael.youakeem@instabox.se
linkedin.com/in/youakeem

● Technical and FE Competency Lead at Instabox
● I love learning by teaching
● Been doing FE Development for almost 12 years
● Bachelor of Law, got into development to build a 

MMORPG game private server

Rafael Youakeem

https://www.linkedin.com/in/youakeem/


What is Front-end



HTML + CSS + JS = <3
The pillars of front-end development



And some more...





Designing for a user

End user Platform

Developing for a browser



Browser Market Share 2010-2020



What if we build our own browser?

Browser UI Browser Engine Rendering Engine UI Back-end

Javascript 
interpreter

Networking Data Storage



Browser Rendering Flow



is the sequence of steps the browser goes through to convert the HTML, CSS, and 
JavaScript into pixels on the screen. Optimizing the critical render path improves render 

performance.The critical rendering path includes the Document Object Model (DOM), CSS 
Object Model (CSSOM), render tree and layout.

Source

The Critical Rendering Path

https://developer.mozilla.org/en-US/docs/Web/Performance/Critical_rendering_path


Markup, HTML, DOM, CSSOM and The Render Tree



Layout
Once the render tree is built, 
layout becomes possible. Layout 
is dependent on the size of 
screen. The layout step 
determines where and how the 
elements are positioned on the 
page, determining the width and 
height of each element, and 
where they are in relation to each 
other.



Paint
At this paint step, the main 
thread walks the layout tree to 
create paint records. Paint record 
is a note of painting process like 
"background first, then text, then 
rectangle".



Compositing
Compositing is when the different 
layouts are being put together to 
build the current view.

https://docs.google.com/file/d/1iRUL-qI6ujD-Tjy0rvBWZP9HvfqWsXNM/preview


Rendering Approach



HTML Rendering

Browsers are more forgiving when it comes to HTML



Defer

Async

Javascript Rendering

Default - render blocking



CSS is render blocking

it’s required to build the 
render tree

Demo!

https://codesandbox.io/s/render-blocking-css-3um16?file=/index.html


Speculative 
Parsing
The HTML parser starts 
speculative loads for scripts, 
style sheets and images it finds 
ahead in the stream and runs the 
HTML tree construction algorithm 
speculatively.



Smooth User Experience



The magic number: 
16.6ms

 10ms

For a rate of 60 frames per second, the 
browser has ~16.6 milliseconds to execute 
scripts, recalculate styles and layout if needed, 
and repaint the area being updated. 

Slow scripts and animating expensive CSS 
properties can result in jank as the browser 
struggles to hit a smooth frame rate.



Left side. Right side.



Tasks are unpredictable
Runs more than often, consuming resources

Runs anywhere within a frame (setInterval(() => {}. 1000 / 60)



requestAnimationFrame



Making Visual Changes



JS Tasks will 
complete before 
the rendering steps

Quiz! Demo

https://www.menti.com/oymrikjsbd
https://codesandbox.io/s/rainbow-box-j9p77?file=/src/index.js


Learn from the browser - batch your changes



(Immediate) Triggering Layout

Font size change Browser resize Props like 
offsetHeight, 
clientWidth

https://gist.github.com/paulirish/5d52fb081b3570c81e3a
https://gist.github.com/paulirish/5d52fb081b3570c81e3a
https://gist.github.com/paulirish/5d52fb081b3570c81e3a


Animating the unanimateable
Demo!

https://codesandbox.io/s/animated-display-none-gl46f?file=/index.html


Use composite 
only properties

● Layout and Paint are expensive 
and they run on the main thread 
blocking it.

● Composite is much cheaper and 
runs on its own thread keeping the 
main thread unblocked

● It basically means moving 
individual already painted layers 
around. They don’t affect anything 
else on the page.

https://csstriggers.com/
https://csstriggers.com/
https://docs.google.com/file/d/1iRUL-qI6ujD-Tjy0rvBWZP9HvfqWsXNM/preview


How to profile and debug performance issues



Time to get our hands dirty!



Task: Improve an animation (30 min)
1. You will be split into rooms
2. Once in the room, agree on the team name
3. Go to: https://codesandbox.io/s/janky-confetti-eethd
4. Fork the project
5. Make changes in your fork
6. Join back
7. Present your team and your project:

a. What was wrong in the initial animation
b. How did you solve it

https://codesandbox.io/s/janky-confetti-eethd


Performance takeaways
● <script> is in footer
● Inline critical CSS (could defer loading the rest of the CSS)
● We have ~10ms to do any logical operations within a frame (which provides a 

smooth experience and avoids janky animations)
● Use composite only properties and avoid triggering layout
● Batch style reads and writes



References and resources
● https://www.html5rocks.com/en/tutorials/internals/howbrowserswork/
● https://medium.com/jspoint/how-the-browser-renders-a-web-page-dom-cssom-and-rendering-df10531c9969
● https://developers.google.com/web/fundamentals/performance/critical-rendering-path/constructing-the-objec

t-model
● https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5/HTML5_Parser
● https://www.youtube.com/watch?v=SmE4OwHztCc
● https://developers.google.com/web/updates/2018/09/inside-browser-part3
● https://developers.google.com/web/fundamentals/performance/rendering/avoid-large-complex-layouts-and-l

ayout-thrashing
● https://developers.google.com/web/fundamentals/performance/rendering/stick-to-compositor-only-properties

-and-manage-layer-count
● https://csstriggers.com/
● https://gist.github.com/paulirish/5d52fb081b3570c81e3a
● https://youtu.be/cCOL7MC4Pl0?t=540

https://www.html5rocks.com/en/tutorials/internals/howbrowserswork/
https://medium.com/jspoint/how-the-browser-renders-a-web-page-dom-cssom-and-rendering-df10531c9969
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/constructing-the-object-model
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/constructing-the-object-model
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5/HTML5_Parser
https://www.youtube.com/watch?v=SmE4OwHztCc
https://developers.google.com/web/updates/2018/09/inside-browser-part3
https://developers.google.com/web/fundamentals/performance/rendering/avoid-large-complex-layouts-and-layout-thrashing
https://developers.google.com/web/fundamentals/performance/rendering/avoid-large-complex-layouts-and-layout-thrashing
https://developers.google.com/web/fundamentals/performance/rendering/stick-to-compositor-only-properties-and-manage-layer-count
https://developers.google.com/web/fundamentals/performance/rendering/stick-to-compositor-only-properties-and-manage-layer-count
https://csstriggers.com/
https://gist.github.com/paulirish/5d52fb081b3570c81e3a
https://youtu.be/cCOL7MC4Pl0?t=540


Thank You!


