Design for a user

Develop for a browser

Yuliya Demchenko

yuliya.demchenko@hm.com
linkedin.com/in/demchenko

Hyper Island, Crew 12
Entrepreneur and Consultant
Currently work as an Architect at H&M and FE
competence community facilitator.
e First website: ~17 years ago

https://www.linkedin.com/in/demchenko

Rafael Youakeem

rafael.youakeem@instabox.se
linkedin.com/in/youakeem

Technical and FE Competency Lead at Instabox
| love learning by teaching

Been doing FE Development for almost 12 years
Bachelor of Law, got into development to build a
MMORPG game private server

https://www.linkedin.com/in/youakeem/

What is Front-end

HTML + CSS + JS =<3

The pillars of front-end development

Accessibility

A
S

\ /7

Optimisation

A
Responsive CSS

Frameworks <— CSS Tools <— Front-end —} JS Framework
\

Precompilers (SASS,
LESS, etc)

Build Tools

“ i
\4

And some more.

DEV

Designing for a user

Developing for a browser

—~ ™

End user Platform

42%

28%

14%

Browser Market Share 2010-2020

StatCounter Global Stats
Browser Market Share Worldwide from Dec 2010 - Nov 2020

< Chrome < IE <O Firefox O Safari O Opera < Android UC Browser ‘O Samsung Internet Edge Legacy — Other (dotted)

What if we build our own browser?

000 —m

o

O

Browser Ul Browser Engine Rendering Engine Ul Back-end
N\ o\ ? /o 7\ ey
o 38 _ —
JS |
4 A Yo

Javascript Networking
interpreter

Data Storage

Browser Rendering Flow

DOM CSSOM Render Tree Layout Paint Compositing

construction construction construction operation operation operation

The Critical Rendering Path

is the sequence of steps the browser goes through to convert the HTML, CSS, and
JavaScript into pixels on the screen. Optimizing the critical render path improves render
performance.The critical rendering path includes the Document Object Model (DOM), CSS
Object Model (CSSOM), render tree and layout.

Source

https://developer.mozilla.org/en-US/docs/Web/Performance/Critical_rendering_path

Markup, HTML, DOM, CSSOM and The Render Tree

titl link d pt
Eleme HTMLDivElement
hl p
HTMLHeadingElement HTMLParagraphElement
(TextNode) (D

DOM

html html
padding: Opx padding: Opx

/
/l

body body
div di
width: 300px jth
hl p hl
color: gray; font-size: 12px; color: gray;
(TextNode)
or: gr

CSSOM Render Tree

Layout

Once the render tree is built,
layout becomes possible. Layout
is dependent on the size of
screen. The layout step
determines where and how the
elements are positioned on the
page, determining the width and
height of each element, and
where they are in relation to each
other.

000 /¢ — —. x\

€ 9 ¢ I!www‘mysite.com

Renderer Process

Computed Style
l Computed Style

Computed Style

LayoutBlock Flow

LayoutBlock Flow

LayoutText

oooooo

»- Main thread

Layout Tree

Paint

At this paint step, the main
thread walks the layout tree to
create paint records. Paint record
is a note of painting process like
"background first, then text, then
rectangle".

000 —_——

® <h1>Text overlay</h1>

€ 3 ¢

{1 @ <div> Block 1</div>

) '

Block 1

2]

L1
verlay

Block 2

o

® <div> Block 2 <div>

\" h1 {

. z-index: 1;
position: absolute;

}
div {

z-index: 0O;

}

Compositing

Compositing is when the different
layouts are being put together to
build the current view.

https://docs.google.com/file/d/1iRUL-qI6ujD-Tjy0rvBWZP9HvfqWsXNM/preview

Rendering Approach

HTML Rendering

H1 title is displyed correctly

itle is displyed correctly

Some content on the page that will renderder correctly as well

renderder correctly as well

Browsers are more forgiving when it comes to HTML

Javascript Rendering

Default - render blocking

|

Async

Defer

CSS is render blocking

it’s required to build the
render tree

Demo!

https://codesandbox.io/s/render-blocking-css-3um16?file=/index.html

Speculative
Parsing

The HTML parser starts
speculative loads for scripts,
style sheets and images it finds
ahead in the stream and runs the
HTML tree construction algorithm
speculatively.

slider.js
animate.js
cookie.js
slidel.png

slide2.png

slider.js
animate.js
cookie.js
slidel.png

slide2.png

fetch execution
fetch execution

fetch execution

Sequential script loading

fetch execution
fetch execution

fetch execution

fetch

fetch

Preloading resources with speculative parsing

Smooth User Experience

The magic nyymber:
16.6ms

For a rate of 60 frames per second, the
browser has ~16.6 milliseconds to execute
scripts, recalculate styles and layout if needed,
and repaint the area being updated.

Slow scripts and animating expensive CSS
properties can result in jank as the browser
struggles to hit a smooth frame rate.

Left side. Right side.

Tasks are unpredictable

Runs more than often, consuming resources

Runs anywhere within a frame (setinterval(() => {}. 1000 / 60)

requestAnimationFrame

Making Visual Changes

<div class="box"></div>

JS Tasks will it s,
complete before
the rendering steps N

requestAnimationFrame(() => {
console.log("Current background color:", box.style.backgroundColor);

Quiz! Demo

.backgroundColor "orange";

> .backgroundColor "yellow";

\ backgroundColor "green";
box.style.backgroundColor "blue";

box.style.backgroundColor sindiges:

box.style.backgroundColor "violet";

https://www.menti.com/oymrikjsbd
https://codesandbox.io/s/rainbow-box-j9p77?file=/src/index.js

Learn from the browser - batch your changes

00

const products = querySelectorAll('.product')

products.forEach(product
const productWidth
product. t =

h)

const productWidths = products.map(product => {
return product.offsetWidth

1)

products.forEach((product, index) => {

2. height = productWidths[index]

(Immediate) Triggering Layout

Font size change

hd

Browser resize

Props like
offsetHeight,

clientWidth

https://gist.github.com/paulirish/5d52fb081b3570c81e3a
https://gist.github.com/paulirish/5d52fb081b3570c81e3a
https://gist.github.com/paulirish/5d52fb081b3570c81e3a

Animating the unanimateable

Demo!

https://codesandbox.io/s/animated-display-none-gl46f?file=/index.html

Use composite

only properties

Layout and Paint are expensive
and they run on the main thread
blocking it.

Composite is much cheaper and
runs on its own thread keeping the
main thread unblocked

It basically means moving
individual already painted layers
around. They don’t affect anything
else on the page.

https://csstriggers.com/
https://csstriggers.com/
https://docs.google.com/file/d/1iRUL-qI6ujD-Tjy0rvBWZP9HvfqWsXNM/preview

How to profile and debug performance issues

498 ms 998 ms 1498 ms 1998 ms

I
N i "‘\/WWWW"'T'-' R W"MWW,W//%//
l--ll------.---------ll i

198 ms 398 ms 598 ms 798 ms 998 ms 1198 ms 1398 ms 1598 ms 1798 ms 1998 ms 2198 ms 2398 m
| Netme—«
e T e

v InteractionS
» Animation

Timings FP L DCL

experience I HININRIERNIEEEIEINIEIRIEE R R REE R RN

i i 1%

¥ Main — https://confetti.youakeem.vercel.app/

i

2

NS O~

Task: Improve an animation (30 min)

You will be split into rooms

Once in the room, agree on the team name

Go to: https://codesandbox.io/s/janky-confetti-eethd
Fork the project

Make changes in your fork

Join back

Present your team and your project:
a. What was wrong in the initial animation
b. How did you solve it

https://codesandbox.io/s/janky-confetti-eethd

Performance takeaways

<script> is in footer

Inline critical CSS (could defer loading the rest of the CSS)

We have ~10ms to do any logical operations within a frame (which provides a
smooth experience and avoids janky animations)

Use composite only properties and avoid triggering layout

Batch style reads and writes

References and resources

https://www.htmI5rocks.com/en/tutorials/internals/howbrowserswork/
https://medium.com/jspoint/how-the-browser-renders-a-web-page-dom-cssom-and-rendering-df10531¢c9969
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/constructing-the-objec
t-model
https://developer.mozilla.org/en-US/docs/\Web/Guide/HTML/HTML5/HTMLS_Parser
https://www.youtube.com/watch?v=SmE40OwHztCc
https://developers.google.com/web/updates/2018/09/inside-browser-part3
https://developers.google.com/web/fundamentals/performance/rendering/avoid-large-complex-layouts-and-|
ayout-thrashing
e htips://developers.google.com/web/fundamentals/performance/rendering/stick-to-compositor-only-properties

-and-manage-layer-count

https://csstriggers.com/

https://qgist.github.com/paulirish/5d52fb081b3570c81e3a

https://youtu.be/cCOL7MC4P10?t=540

https://www.html5rocks.com/en/tutorials/internals/howbrowserswork/
https://medium.com/jspoint/how-the-browser-renders-a-web-page-dom-cssom-and-rendering-df10531c9969
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/constructing-the-object-model
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/constructing-the-object-model
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5/HTML5_Parser
https://www.youtube.com/watch?v=SmE4OwHztCc
https://developers.google.com/web/updates/2018/09/inside-browser-part3
https://developers.google.com/web/fundamentals/performance/rendering/avoid-large-complex-layouts-and-layout-thrashing
https://developers.google.com/web/fundamentals/performance/rendering/avoid-large-complex-layouts-and-layout-thrashing
https://developers.google.com/web/fundamentals/performance/rendering/stick-to-compositor-only-properties-and-manage-layer-count
https://developers.google.com/web/fundamentals/performance/rendering/stick-to-compositor-only-properties-and-manage-layer-count
https://csstriggers.com/
https://gist.github.com/paulirish/5d52fb081b3570c81e3a
https://youtu.be/cCOL7MC4Pl0?t=540

Thank Youl!

